UPDATE ON NEW TREATMENT OPTIONS IN RECURRENT OVARIAN CANCER

Prof Stan Kaye
Royal Marsden Hospital
London

Barcelona
January 2010

OVARIAN CANCER – the typical patient

DIAGNOSIS 1st relapse death
0 12 24 36 48 60

SURGERY
chemo

<table>
<thead>
<tr>
<th>chemo 1</th>
<th>chemo 2</th>
<th>chemo 3</th>
<th>chemo 4</th>
<th>chemo 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>carboplatin ± paclitaxel</td>
<td>carboplatin-based</td>
<td>carboplatin-based</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus: for typical patient, duration of survival after 1st relapse exceeds initial time to relapse

options include:
repeat paclitaxel (weekly), Liposomal doxorubicin, topotecan, etoposide, potentially Phase I trial
ROLE OF WEEKLY PACLITAXEL IN OVARIAN CANCER

Japanese Gynae Oncol Group Trial, reported at ASCO 2008

FIRST LINE
Stage II – IV
OVARIAN CANCER
(incl. primary peritoneal fallopian tube)

Randomise

Paclitaxel 180 mg/m² day 1 q 3w
Carboplatin AUC 6 day 1 6 – 9 cycles

Paclitaxel 80 mg/m² days 1,8,15 q 3w
Carboplatin AUC 6 day 1 6 – 9 cycles

Primary end-point: PFS
Total accrual: 632 pts

WEEKLY PACLITAXEL IN FIRST-LINE THERAPY - CONCLUSIONS

<table>
<thead>
<tr>
<th></th>
<th>Conventional paclitaxel/carbo (n = 319)</th>
<th>Weekly paclitaxel/carbo (n = 312)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurable response CR/PR</td>
<td>54%</td>
<td>56%</td>
<td>0.72</td>
</tr>
<tr>
<td>Median PFS</td>
<td>17.2 m</td>
<td>28.0 m</td>
<td>0.0015</td>
</tr>
<tr>
<td>2 yr survival</td>
<td>77.7%</td>
<td>83.6%</td>
<td>0.049</td>
</tr>
<tr>
<td>Received ≥6 cycles</td>
<td>72%</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>Discontinued protocol therapy (9 cycles) because of toxicity</td>
<td>22%</td>
<td>36%</td>
<td></td>
</tr>
</tbody>
</table>

- Well conducted, well-balanced (55% optimal debulk), sizeable trial with sufficient follow-up
- Intriguing evidence to indicate significant improvement in PFS, albeit with some increase in (myelo)toxicity, G3/4 anaemia 44% vs 69% (p < 0.001)
- Size of benefit, i.e. 17 m → 28 m, requires urgent confirmation in another first-line trial
WEEKLY PACLITAXEL FOR OVARIAN CANCER – KEY ISSUES FOR 2010 ONWARDS

• can results in Japanese trial be confirmed in large scale randomized first line trials?
 • confirmatory trials planned by GOG/ICON-8
• is weekly paclitaxel an alternative form of “antiangiogenic” therapy?
 • new randomized trials will compare with bevacizumab
• in recurrent ovarian cancer, response rate is ~50% but response duration is short (Linch et al, 2008); can efficacy of weekly paclitaxel be improved by addition of novel targeted agents?
 • randomized trials planned/underway include a SRC-inhibitor and IGFR inhibitor

NEW TREATMENT OPTIONS IN RECURRENT OVARIAN CANCER

• “molecular targeted” agents
 - monoclonal antibodies
 - small molecules
• novel cytotoxics

Major issues:
• can we select those patients who will benefit most?
• is a single agent, or combination approach preferable?
RATIONAL TARGETS IN OVARIAN CANCER

• VEGF receptor and ligand
• PI3K/AKT pathway
• alpha folate receptor
• and the dysfunctional BRCA gene!

TARGETING VEGF IN OVARIAN CANCER
– WILL THIS BE ITS FINEST HOUR?

• VEGF family plays key role in biology of healthy ovary and of ovarian cancer

• anti-VEGF strategy effective in appropriate preclinical models

• in ovarian cancer single agent treatment (with bevacizumab) more effective than in any other solid tumour except renal

BEVACIZUMAB IN OVARIAN CANCER

Two single agent Phase II trials with bevacizumab 15 mg/kg i.v. q3 weekly

<table>
<thead>
<tr>
<th>STUDY</th>
<th>no</th>
<th>Resp %</th>
<th>PFS at 6 m</th>
<th>Prior treatment</th>
<th>Bowel perforation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOG 170D</td>
<td>63</td>
<td>18% PR</td>
<td>39%</td>
<td>42% plat. sensitive (up to 2 prior treatments)</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td>55% SD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannestra</td>
<td>44*</td>
<td>16% PR</td>
<td>27%</td>
<td>All plat. refractory or resistant (up to 3 prior regimens)</td>
<td>5</td>
</tr>
<tr>
<td>et al, 2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Study stopped early because of bowel perforations (1 fatal)
 • is this related to bowel tumour involvement (obstruction and bowel wall thickening)?

RANDOMIZED TRIALS OF BEVACIZUMAB IN OVARIAN CANCER

<table>
<thead>
<tr>
<th>GROUP</th>
<th>CHEMO</th>
<th>BEVACIZUMAB</th>
<th>No. of PATIENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST LINE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOG (218)</td>
<td>Paclitaxel Carboplatin</td>
<td>Concurrent and maintenance 15 mg/kg q3w (3 arm placebo)</td>
<td>1800</td>
</tr>
<tr>
<td>GCIG (ICON7)</td>
<td>Paclitaxel Carboplatin</td>
<td>Concurrent only 7.5 mg/kg q3w (2 arm)</td>
<td>1500</td>
</tr>
<tr>
<td>SECOND LINE – PLATINUM SENSITIVE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOG (213)</td>
<td>Paclitaxel Carboplatin</td>
<td>Concurrent and maintenance (2 arm) 15 mg/kg q3w</td>
<td>1600</td>
</tr>
<tr>
<td>OCEANS</td>
<td>Gemcitabine Carboplatin</td>
<td>Concurrent (2 arm) 15 mg/kg q3w</td>
<td>200</td>
</tr>
</tbody>
</table>
BEVACIZUMAB IN OVARIAN CANCER

Current position:
- established single agent activity in recurrent disease
- well tolerated; (higher) risk of GI perforation will probably be reduced by careful patient selection
- results of first-line combination studies (with paclitaxel/carboplatin) expected in 2010, involving concurrent and maintenance treatment
- other combinations now being explored with chemotherapy or other targeted agents

SMALL MOLECULE ANTI-ANGIOGENIC APPROACH TO OVARIAN CANCER

<table>
<thead>
<tr>
<th>AGENT</th>
<th>Target</th>
<th>No of eval pts</th>
<th>Dose</th>
<th>Response: clinical benefit (PR/SD >3 m) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cediranib</td>
<td>VEGFR 1-3 PDGFR</td>
<td>72 (2 trials)</td>
<td>30-45 mg o.d.</td>
<td>24 (35%)</td>
</tr>
<tr>
<td>Sunitinib</td>
<td>VEGFR PDGFR</td>
<td>17</td>
<td>37.5 mg o.d.</td>
<td>12 (70%)</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>VEGFR 1-3 PDGFR</td>
<td>36</td>
<td>800 mg o.d.</td>
<td>13 (36%)</td>
</tr>
<tr>
<td>Sorafenib</td>
<td>VEGFR 1-3 PDGFR RAF</td>
<td>59</td>
<td>400 mg b.d.</td>
<td>22 (37%)</td>
</tr>
</tbody>
</table>

Randomized trials planned or underway in first and second line, inc. ICON-6 - also including Vargatef (BIBF 1120)
RANDOMIZED TRIAL FOR PLATINUM-SENSITIVE RELAPSED OVARIAN CANCER

ICON-6: Can VEGFR inhibitor Cediranib improve survival?

Platinum sensitive relapse, >6 m interval, one prior treatment

Randomize

(paclitaxel)-carboplatin x 6 and concurrent placebo

(paclitaxel)-carboplatin x 6 and concurrent Cediranib 20 mg daily, then “maintenance” placebo for 18 m, or until PD

(paclitaxel)-carboplatin x 6 and concurrent Cediranib 20 mg daily, then “maintenance” Cediranib for 18 m, or until PD

n = 2000 pts
Primary outcome: OS (hazard ratio 0.75)

A MAINTENANCE ANTI-ANGIOGENIC APPROACH TO OVARIAN CANCER

Randomized Phase II trial of BIBF 1120 (VEGFR, PDGFR, FGFR inhibitor)

Relapsed ovarian cancer, responded to 2nd/3rd/4th line chemo, which had been started <12 m from previous chemo

Randomize

BIBF 1120 250 mg bd for up to 36 w placebo

Completed 36 w PFS at 36 w

<table>
<thead>
<tr>
<th></th>
<th>n = 43</th>
<th>n = 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>15.6%</td>
<td>(3.6-27.3)</td>
</tr>
<tr>
<td>0</td>
<td>2.0%</td>
<td>(0-8.4)</td>
</tr>
</tbody>
</table>

G 3/4 adverse events: 61% vs 28% with frequent elevated transaminases on BIBF 1120 (43%) but only 2 pts discontinued

Conclusion: BIBF 1120 could delay disease progression in previously responding ovarian cancer patients

ASCO 2009
PI3 KINASE/AKT PATHWAY and OVARIAN CANCER

- key to normal cellular functions including glucose metabolism
- in cancer cells, it promotes growth factor-mediated cell survival and blocks apoptosis
- PIK3CA (gene encoding P110α – key catalytic subunit) is amplified in 40% of ovarian cancer (Shayesteh et al, 1999) and mutations also present (Campbell et al, 2004)

PI3 KINASE/AKT PATHWAY and OVARIAN CANCER

PI3K/AKT
- plays an important role in drug resistance to both paclitaxel (Asselin et al, 2001) and platinum (Mabucci et al, 2002) through negative effect on apoptosis
- inhibitors can reverse resistance to both agents, particularly in models with increased pathway activity

What’s in the clinic? - Several agents, mostly Phase I

- Range of small mol. wt. inhibitors incl. new structures
- Occasional responses (mainly CA125) noted in ongoing Phase I trials
- Combination studies planned or underway, and patient selection strategies under discussion

- PI3 KINASE
- PKB/AKT
- mTOR
- New TORC 1/2 inhibitor
- HSP90 inhibitors
ARE THERE OTHER NOVEL TARGETS? ONE POSSIBLE: THE ALPHA FOLATE RECEPTOR

Alpha folate receptor:
- cell-membrane linked high affinity folate transporter
- acts by receptor-mediated endocytosis
- restricted expression in normal tissue (placenta, kidney, choroid plexus)
- overexpressed in various epithelial tumours, particularly ovary
- potential to target new cytotoxics, e.g. TS inhibitor, ONX 0801

% tumours overexpressing

<table>
<thead>
<tr>
<th>Tissue</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovary</td>
<td>92%</td>
</tr>
<tr>
<td>Uterus</td>
<td>91%</td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>70%</td>
</tr>
<tr>
<td>Kidney</td>
<td>50%</td>
</tr>
<tr>
<td>Stomach</td>
<td>38%</td>
</tr>
<tr>
<td>Lung</td>
<td>33%</td>
</tr>
<tr>
<td>Colon</td>
<td>22%</td>
</tr>
<tr>
<td>Choroid plexus</td>
<td>80% (epend)</td>
</tr>
<tr>
<td>Brain</td>
<td>80% (mets)</td>
</tr>
</tbody>
</table>

α-FR overexpression in fresh clinical tumour material as measured by IHC (adapted from Garin-Chesa1993; Weltman 1992; Bueno 2001)

THE ALPHA FOLATE RECEPTOR (FR) and OVARIAN CANCER – A THERAPEUTIC ANTIBODY APPROACH

• Farletuzumab
 - humanized MoA against FR with experimental anti-tumour activity in resistant models, particularly in combination with chemo
 - in Phase I trial, significant tumour uptake seen using radiolabelled MoA
 - in Phase II trial of 44 platinum-sensitive relapsed pts treated with paclitaxel-carbo plus farletuzumab:
 • 70% RECIST response/89% CA125 response
 • in 9 pts (21%) second PFS was longer than first (Armstrong et al, ECCO 2009)
 - randomized trials planned in both platinum sensitive and resistant disease
NOVEL CYTOTOXICS

<table>
<thead>
<tr>
<th>DRUG</th>
<th>TARGET</th>
<th>RATIONALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabectedin (ET743)</td>
<td>minor groove of DNA</td>
<td>active in platinum-resistant models</td>
</tr>
<tr>
<td>Patupilone (epothilone EPO906)</td>
<td>microtubule</td>
<td>active in taxane-resistant models</td>
</tr>
</tbody>
</table>

NOVEL CYTOTOXICS

<table>
<thead>
<tr>
<th>DRUG</th>
<th>ACTIVITY</th>
<th>COMPLETED TRIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabectedin</td>
<td>25/78 (32%) PR in plat. sensitive pts, but only 4/92 (4%) in plat. resistant pts</td>
<td>Randomized Phase III trial of trabectedin/liposomal doxorubicin vs. liposomal doxorubicin - positive results for PFS and OS in 6-12 m group</td>
</tr>
<tr>
<td>Patupilone</td>
<td>8/33 (24%) PR in plat. resistant pts, with q3 w dosing</td>
<td>Randomized Phase III trial vs. liposomal doxorubicin in resistant pts - Results expected to be presented at ASCO 2010 (n = 810)</td>
</tr>
</tbody>
</table>
PARP INHIBITION and TUMOUR-SELECTIVE SYNTHETIC LETHALITY

DNA damage (SSBs)

DNA replication (accumulation of DNA DSBs)

Normal cell
HR-mediated DNA repair
Cell survival
HR-deficient tumor cell (e.g. BRCA 1/2−)
Impaired HR-mediated DNA repair
Cell death

Tumor-selective cytotoxicity

DSB, double-strand break; HR, homologous recombination
SSB, single-strand break

OLAPARIB
A novel, orally active PARP inhibitor

- A Phase I trial identified olaparib (AZD2281; KU-0059436) 400 mg bid as the maximum tolerated dose with a 50% (23/46 pts) combined response rate (RECIST and CA125) in BRCA-mutated ovarian cancer

- Most common toxicities: CTCAE grade 1 and 2 nausea and fatigue

- Significant PARP inhibition and tumor response at olaparib doses 100–400 mg bid

INTERNATIONAL PHASE II TRIAL of OLAPARIB in ASSOCIATED OVARIAN CANCER

57 pts (BRCA 1 39; BRCA 2 18) received either 400 mg b.d. or 100 mg b.d. in 2 sequential cohorts – (med. 3 prior CT)

<table>
<thead>
<tr>
<th>33 pts at 400 mg b.d.</th>
<th>RECIST response</th>
<th>Clinical benefit (inc. CA125 response)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>11 (33%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 (66%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24 pts at 100 mg b.d.</th>
<th>RECIST response</th>
<th>Clinical benefit (inc. CA125 response)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3 (13%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 (42%)</td>
</tr>
</tbody>
</table>

Conclusion:
- level of efficacy confirmed, med. response duration 9.5 m
- favourable toxicity profile confirmed
- 400 mg b.d. appears to be more active than 100 mg b.d.
- recently completed randomized trial (vs. liposomal doxorubicin) will compare 400 mg b.d. + 200 mg b.d. doses
 (Audeh et al, ASCO, 2009)

POTENTIAL of PARP INHIBITOR (SINGLE AGENT) in SPORADIC OVARIAN CANCER

Question: What proportion of ovarian cancer patients will have BRCA1/2 dysfunction, either due to mutation of either gene or for other reasons, e.g. methylation of this or related genes?

Answer: • approx 15% of sporadic ovarian cancers have mutation of either gene; in serous histological subtypes, proportion is 18%
• approx 15-20% more cases have BRCA dysfunction, through methylation, etc.
• approx 10% have FANCF methylation

Therefore: potentially half the cases of serous ovarian ca could benefit from targeted single agent treatment - how can these be identified?
FURTHER DEVELOPMENT OF OLAPARIB – A MAINTENANCE TRIAL

Patients with serous ovarian cancer, responding to 2nd or 3rd line platinum-based chemo, with CR/PR (penultimate treatment-free interval >6 m)

- BRCA mutation not necessary

RANDOMISE

olaparib 400 mg bd until disease progression

placebo until disease progression

n = 250
end point: PFS
- recruitment now underway

PATIENT SELECTION FOR SINGLE AGENT TREATMENT WITH OLAPARIB

Predictive biomarker:

- immunohistochemistry, with BRCA 1/2 antibodies
- functional (ex vivo) test for loss of HR (RAD 51 foci-formation)
- molecular signature (gene array)

and/or: background of

- repeated response to platinum-based chemo
- prolonged survival (>5 yrs)
- serous histology
KEY ISSUES FOR FUTURE DEVELOPMENTS of PARP INHIBITORS

- Is a single agent or combination approach preferable?
- Single agent treatment utilises tumour selective synthetic lethality, with no issues of additional toxicity
- Combination with DNA-damaging chemotherapy, e.g. temozolamide or platinum, reverses resistance in experimental models
- But: clinically, myelotoxicity is usually enhanced by chemo/PARPi combination, and optimal duration of PARPi not yet defined
 - Exception: randomized trial in triple negative breast cancer with OSI-201
- Randomized trials in ovarian cancer (at least 4 now planned) will need careful interpretation

PARP INHIBITORS IN OVARIAN CANCER

Summary:
- Compelling clinical data with Olaparib indicate efficacy in BRCA-related cancer
- Potential role of single agent therapy in sporadic ovarian cancer (and TNBC) requires urgent assessment
- In this context, tests for “BRCaeness” (HR loss) need rapid development
- Combination approach merits further study, but regimens require careful consideration of dose/schedule of both chemo and PARPi, with appropriate patient selection
- Tumour selective synthetic lethality represents an important step forward in cancer treatment
ACKNOWLEDGEMENTS

• The patients and their families
• DDU, Royal Marsden Hospital
 – Johann de Bono
 – Peter Fong
 – Tim Yap
 – Sarah Stapleton
 – Janet Hanwell
• Netherlands Cancer Institute
 – Jan Schellens
 – David Boss
 – Marje Roelvink
• Edinburgh
 – Charles Gourley
• Brussels
 – J De Geve
• Poland
 – J Lubinski
• Cancer Research UK
• ICR/Breakthrough Breast Cancer Research Centre
 – Alan Ashworth
 – Andy Tutt
• KuDOS Pharmaceuticals/AstraZeneca
 – Peter Mortimer
 – Jim Carmichael
 – Mark O’Connor