Ulcerative colitis patients with low grade dysplasia should undergo frequent surveillance colonoscopies (and not immediate colectomy)...

David T. Rubin, MD, FACP, AGAF
Associate Professor of Medicine
Co-Director, Inflammatory Bowel Disease Center
University of Chicago Medical Center
Ulcerative colitis patients with low grade dysplasia should undergo frequent surveillance colonoscopies (and not immediate colectomy)...

Sometimes

David T. Rubin, MD, FACP, AGAF
Associate Professor of Medicine
Co-Director, Inflammatory Bowel Disease Center
University of Chicago Medical Center

Why do we do surveillance colonoscopy in UC?

• Prevention of colorectal cancer
• Prevention of death from colorectal cancer
• Because the guidelines tell us to
 – Based on consensus
 – Based on “best” evidence
 • Concepts of field effect
 • Accepted limitations to detection ability in historical approach
Low Grade Dysplasia in ulcerative colitis
Yesterday....

• “Invisible”

• Low-grade dysplasia → subsequent high-grade dysplasia or cancer in 29% - 54% of patients1-3

• Concurrent adenocarcinoma ~19\%2-4

• Distinction not made between flat dysplasia and polypoid dysplasia

1Connell WR et al. Gastroenterology. 1994;107:934-944.

Progression of LGD to Advanced Neoplasia: NYC
Worst Case Scenario?

• 46 patients with UC and flat LGD

• 7 cases of colorectal CA

• Rate of progression \textbf{53\% at 5 years} (point estimate)

• Unifocal LGD same risk as multifocal or recurrent LGD

• 2 patients with an interval NEGATIVE colonoscopy who subsequently had Duke’s C CRC

Ullman T et al., Gastroenterology 2003;125.
Time to Cancer Post–Dysplasia Diagnosis: UK

Kaplan-Meier Method

Probability of Remaining Cancer-Free

Years
0 1 2 3 4 5 6 7 8 9 10

High-grade dysplasia
Low-grade dysplasia

Follow-up of Neoplasia in UC: Chicago

Raised and flat dysplasia in all patients

Progression to HGP/CRC

n=41

Raised dysplasia only
Flat dysplasia

Pekow, et al. Inflamm Bowel Dis, in press.
Chromoendoscopy suggests we are missing dysplasia frequently...

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Institution</th>
<th># of UC Patients</th>
<th>Type of Imaging</th>
<th>Dysplastic lesions Chromoendoscopy</th>
<th>Dysplastic lesions Conventional endoscopy</th>
<th>Sensitivity/Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiesslich (2003)</td>
<td>University of Mainz, Germany</td>
<td>263</td>
<td>Methylene blue</td>
<td>32</td>
<td>10</td>
<td>93% sens. 93% spec.</td>
</tr>
<tr>
<td>Rutter (2004)</td>
<td>St. Mark's Hospital, Harrow, UK</td>
<td>100</td>
<td>Indigo carmine</td>
<td>7</td>
<td>0</td>
<td>Not given</td>
</tr>
<tr>
<td>Hurlstone (2005)</td>
<td>The Royal Hallamshire Hospital, Sheffield, UK</td>
<td>350</td>
<td>Indigo Carmine and Magnification</td>
<td>69</td>
<td>24</td>
<td>93% sens. 88% spec.</td>
</tr>
<tr>
<td>Kiesslich (2007)</td>
<td>University of Mainz, Germany</td>
<td>161</td>
<td>Confocal endomicroscopy</td>
<td>19</td>
<td>4</td>
<td>94.7% sens. 98.3% spec. 97.8% accuracy</td>
</tr>
<tr>
<td>Dekker (2007)</td>
<td>Academic Medical Center, Amsterdam, The Netherlands</td>
<td>42</td>
<td>Narrow-band imaging</td>
<td>8</td>
<td>7</td>
<td>Not given</td>
</tr>
<tr>
<td>Marion (2008)</td>
<td>Mount Sinai, New York, USA</td>
<td>102</td>
<td>Methylene Blue</td>
<td>17</td>
<td>9</td>
<td>Not given</td>
</tr>
</tbody>
</table>

Chromoendoscopy suggests we are missing dysplasia frequently...

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Institution</th>
<th># of UC Patients</th>
<th>Type of Imaging</th>
<th>Dysplastic lesions Chromoendoscopy</th>
<th>Dysplastic lesions Conventional endoscopy</th>
<th>Sensitivity/Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiesslich (2003)</td>
<td>University of Mainz, Germany</td>
<td>263</td>
<td>Methylene blue</td>
<td>32</td>
<td>10</td>
<td>93% sens. 93% spec.</td>
</tr>
<tr>
<td>Rutter (2004)</td>
<td>St. Mark's Hospital, Harrow, UK</td>
<td>100</td>
<td>Indigo carmine</td>
<td>7</td>
<td>0</td>
<td>Not given</td>
</tr>
<tr>
<td>Hurlstone (2005)</td>
<td>The Royal Hallamshire Hospital, Sheffield, UK</td>
<td>350</td>
<td>Indigo Carmine and Magnification</td>
<td>69</td>
<td>24</td>
<td>93% sens. 88% spec.</td>
</tr>
<tr>
<td>Kiesslich (2007)</td>
<td>University of Mainz, Germany</td>
<td>161</td>
<td>Confocal endomicroscopy</td>
<td>19</td>
<td>4</td>
<td>94.7% sens. 98.3% spec. 97.8% accuracy</td>
</tr>
<tr>
<td>Dekker (2007)</td>
<td>Academic Medical Center, Amsterdam, The Netherlands</td>
<td>42</td>
<td>Narrow-band imaging</td>
<td>8</td>
<td>7</td>
<td>Not given</td>
</tr>
<tr>
<td>Marion (2008)</td>
<td>Mount Sinai, New York, USA</td>
<td>102</td>
<td>Methylene Blue</td>
<td>17</td>
<td>9</td>
<td>Not given</td>
</tr>
</tbody>
</table>
So where are all the occult cancers?

• We are missing them…?
• They don’t exist
 – Dysplasia found in the current age has a different predictive value than in the previous era
 – LGD doesn’t progress to cancer
 – Current therapies reduce the risk of cancer progression

What happens to dysplasia found on chromoendoscopy?

• Kiesslich (zoom scope)
 – No follow-up
• Kiesslich (confocal laser endomicroscopy)
 – No follow-up
• Hurlstone (zoom scope)
 – No follow-up
• Rutter
 – No follow-up
• Marion\(^1\)
 – Follow-up with colectomy specimens
 – 5 of original 102 had colectomy due to unresectable LGD.
 – No CRC.

\(^1\)Marion J, et al. Am J Gastroenterol, 2008;103:2342
Follow-Up Chromoendoscopy in IBD: a Long-Term, Prospective, Endoscopic Trial (New York)

- 102 patients, 59 had exams in this follow-up

<table>
<thead>
<tr>
<th>METHOD</th>
<th>FINDINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: standard surveillance colonoscopy with 4 random biopsies every 10 cm</td>
<td>LGD n=1</td>
</tr>
<tr>
<td>B: targeted biopsy or removal of lesions visible under white light THEN Method C</td>
<td>polypoid LGD n=4, all were resected</td>
</tr>
<tr>
<td>C: methylene blue dye spray segmentally applied throughout the colon with biopsy or removal any pit-pattern abnormality or lesion revealed by the dye spray.</td>
<td>LGD n=7, 6 were resected, one was deemed unresectable.</td>
</tr>
</tbody>
</table>

- 5 of original 102 had colectomy due to unresectable LGD. **No CRC.**

In fact, cancer rates are lower than we thought previously.... An updated meta-analysis

- 48 studies included in the meta-analysis
- Included both population based and referral centers
- Included 131,743 persons-years of follow up
- Overall cumulative risk at 10, 20 and 20+ years is 1%, 3% and 7%
- Rate higher in referral centers and those with extensive disease

Lutgens MW, et al. DDW 2008: #194
Not all LGD is the same!
Biologically or prognostically

Macroscopic classification of dysplasia illustrated in a hypothetical case of ulcerative colitis with partial colonic involvement. Dysplasia is shown in black, normal colon in yellow, diseased colon in red.

Itzkowitz S. and Harpaz N. Gastroenterology 126:1634, 2004

We can SEE neoplasia in IBD most of the time (U.K., Chicago)

• “Invisible”: indistinguishable from surrounding inflamed or quiescent mucosa
• “Visible”
 – Polypoid “adenoma-like” lesion
 – Irregular borders “spreading” lesion, not endoscopically resectable (DALM)
 – Mass
 – Stricture
• Optical colonoscopy sensitivity (retrospective studies1,2):
 – Per lesion sensitivity: 61.6%-77.3%
 – Per patient sensitivity: 78.3%-89.3%

Modeling dysplasia detection: how does more accurate biopsies affect the 33 biopsy rule??

- Enhanced endoscopy can detect much smaller dysplastic fields.
- The proportion of negative biopsies is inversely predictive of the size of the dysplastic field.
- If we can detect dysplasia more accurately, the predictive value is different!
- Such “dysplastic fields” have “unknown (perhaps much lower) colorectal cancer risk.”

Patients don’t want colectomy for LGD... even if the 19% number is accurate (which it probably isn’t)

- Patient survey: Dartmouth and Univ of Chicago (n=199)
- 60% of patients would refuse colectomy if their risk of synchronous colon cancer was 20% (as reported with flat LGD)
- The refusers would only agree to colectomy if their risk of synchronous colon cancer was on average 73%

Siegel CA, et al. Submitted 2009
Balancing risks and benefits of colectomy for LGD

• Colectomy adversely affects quality of life when you’ve been in remission (average 6 stools per day)

• Risk of colectomy
 – Anesthesia mortality (1/100,000)
 – Colectomy mortality <1%
 – Small bowel obstruction 28%
 – Dehydration 14%

The paradigm shift in our approach to IBD dysplasia...

• If we can see it, we should be able to follow it

• The results:
 – new information about the natural history of CRC in UC
 – new information about the predictive value of neoplastic lesions
 – fewer colectomies
 – happier patients
 – unhappy surgeons?
Who should NOT be followed?
Considerations

Higher Risk
• Unresectable lesion
• PSC
• Uncontrolled inflammation in addition to dysplasia
• Pseudopolyposis

The Patient who won’t let you
• Poor prep
• Non-compliant
• No follow-up

Rubin’s Rules for Following LGD

• Surveillance must be performed correctly: clean prep, careful exam, adequate biopsies
• Confirm the diagnosis – review of histopathology
• Discuss the controversy with your patient
• Get a second opinion
• Polypoid dysplasia (without flat dysplasia) completely removed can be followed with increased surveillance intensity (3 months *1 then q6 months *2…)
• *Repeated dysplasia, higher grade lesions or increased sphincter tone (yours) should trigger colectomy
• If you live in NYC, all bets are off....
Times have Changed....

Take the colon out!

Follow with care!