The management of advanced gastric cancer: towards individualized therapy

Prof Eric Van Cutsem, MD, PhD
Digestive Oncology
Leuven, Belgium
Advanced Gastric Cancer

In patients with adequate PS, combination chemotherapy can improve survival and QoL

Phase III trials evaluating addition of biologicals in gastric and GEJ cancer

<table>
<thead>
<tr>
<th>Trial</th>
<th>Regimen</th>
<th>No.pts</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ToGA*</td>
<td>5-FU/Cape + cisplatin +/- trastuzumab</td>
<td>584</td>
<td>Reported¹</td>
</tr>
<tr>
<td>LoGIC*</td>
<td>Cape + oxali. +/- lapatinib</td>
<td>410</td>
<td>Ongoing</td>
</tr>
<tr>
<td>AVAGAST</td>
<td>Cape + cisplatin +/- bevacizumab</td>
<td>760</td>
<td>Reported²</td>
</tr>
<tr>
<td>EXPAND</td>
<td>Cape + cisplatin +/- cetuximab</td>
<td>870</td>
<td>Recruited</td>
</tr>
<tr>
<td>REAL-3</td>
<td>EOX +/- panitumumab</td>
<td>730</td>
<td>Ongoing</td>
</tr>
<tr>
<td>GRANITE**</td>
<td>BSC +/- everolimus</td>
<td>600</td>
<td>Recruited</td>
</tr>
</tbody>
</table>

¹Bang Y, Van Cutsem E et al. ASCO 2009
²Kang Y, Van Cutsem E, ASCO 2010

* HER2+ patients only: ** 2ª / 3ª line
Trastuzumab

- Inhibits HER2-mediated signalling in HER2-positive tumors
- Prevents HER2 activation by blocking extracellular domain cleavage
- Activates antibody-dependent cellular cytotoxicity

Some gastric adenocarcinomas are HER2 positive

- Trastuzumab is effective against HER2-overexpressing GC cell lines *in vitro* and *in vivo*

Differences in HER2 testing between breast and gastric cancers

- Pre-ToGA international validation study investigated HER2 testing of 168 gastric cancer samples: concordance in 93% of samples
- Histological differences between gastric and breast cancers necessitate minor modifications to the HER2-scoring system for gastric cancer

- Tumour heterogeneity is more common in gastric cancer
- Incomplete membrane staining with IHC is more common in gastric cancer

Hofmann M et al Histopathology 2008
<table>
<thead>
<tr>
<th>Score</th>
<th>Surgical Specimen Staining Pattern</th>
<th>Biopsy Specimen Staining Pattern</th>
<th>HER2 Overexpr. Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No reactivity or membranous reactivity in < 10% of tumor cells</td>
<td>No reactivity or no membranous reactivity in any tumor cell</td>
<td>Negative</td>
</tr>
<tr>
<td>1+</td>
<td>Faint or barely perceptible membranous reactivity in ≥ 10% of tumor cells; cells are reactive only in part of their membrane</td>
<td>Tumor cell cluster with faint or barely perceptible membranous reactivity irrespective of % of tumor cells stained</td>
<td>Negative</td>
</tr>
<tr>
<td>2+</td>
<td>Weak to moderate complete, basolateral or lateral membranous reactivity in ≥ 10% of tumor cells</td>
<td>Tumor cell cluster with weak to moderate complete, basolateral or lateral membranous reactivity irrespective of % of tumor cells stained</td>
<td>Equivocal</td>
</tr>
<tr>
<td>3+</td>
<td>Strong complete, basolateral or lateral membranous reactivity in ≥ 10% of tumor cells</td>
<td>Tumor cell cluster with strong complete, basolateral or lateral membranous reactivity irrespective of % of tumor cells stained</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Bang Y, Van Cutsem E et al. Lancet 2010

HER2 positivity in subgroups

3807 screened gastric adenocarcinoma

- **HER2 positive:** 22% (IHC 3+ and/or FISH +)
- **Histologic subtype** (Lauren classification):
 - Intestinal type: 32.2 % (n= 1884)
 - Diffuse type: 6.1 % (n= 1098)
 - Mixed type: 20.4 % (n= 637)
- **Tumor site**
 - GEJ: 33.2 %
 - Gastric: 20.9 %
- **Endoscopic biopsies = surgical biopsies**
- **Asia = Europe**

Bang Y, Van Cutsem E. ASCO 2009
ToGA trial design
Phase III, randomized, open-label, international, multicenter study

3807 patients screened
810 HER2-positive (22.1%)

HER2-positive advanced GC (n=584)

- HER2-positive tumour (centrally assessed)
 - IHC 3+ and/or FISH+
- Stratification factors
 - advanced vs metastatic
 - GC vs GEJ
 - measurable vs non-measurable
 - ECOG PS 0-1 vs 2
 - capecitabine vs 5-FU

5-FU or capecitabine + cisplatin (n=290)
5-FU or capecitabine + cisplatin + trastuzumab (n=294)

*Chosen at investigator’s discretion
GEJ, gastroesophageal junction

Van Cutsem E et al; LBAbstract 4509, ASCO 2009
Bang Y, Van Cutsem E et al Lancet 2010

Primary end point: OS

<table>
<thead>
<tr>
<th>Event</th>
<th>FC + T</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. at risk</td>
<td>294</td>
<td>290</td>
</tr>
<tr>
<td>Median</td>
<td>13.8</td>
<td>11.1</td>
</tr>
<tr>
<td>Median OS</td>
<td>11.1</td>
<td>13.8</td>
</tr>
<tr>
<td>HR</td>
<td>0.74</td>
<td>0.60, 0.91</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.0046</td>
<td></td>
</tr>
</tbody>
</table>

Van Cutsem E et al; LBAbstract 4509, ASCO 2009
Bang Y, Van Cutsem E et al Lancet 2010
Efficacy end points

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>F+C n=290</th>
<th>F+C + trastuzumab n=294</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS, median months</td>
<td>11.1</td>
<td>13.8</td>
<td>0.74 (0.60, 0.91)</td>
<td>0.0046</td>
</tr>
<tr>
<td>PFS, median months</td>
<td>5.5</td>
<td>6.7</td>
<td>0.71 (0.59, 0.85)</td>
<td>0.0002</td>
</tr>
<tr>
<td>TTP, median months</td>
<td>5.6</td>
<td>7.1</td>
<td>0.70 (0.58, 0.85)</td>
<td>0.0003</td>
</tr>
<tr>
<td>ORR, %</td>
<td>34.5</td>
<td>47.3</td>
<td>1.70* (1.22, 2.38)</td>
<td>0.0017</td>
</tr>
<tr>
<td>Patients with measurable disease</td>
<td>37.4</td>
<td>50.9</td>
<td>1.74* (1.23, 2.46)</td>
<td>0.0017</td>
</tr>
<tr>
<td>DoR, median months</td>
<td>4.8</td>
<td>6.9</td>
<td>0.54 (0.40, 0.73)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Clinical benefit rate, %</td>
<td>69.3</td>
<td>78.9</td>
<td>1.66 (1.14, 2.41)</td>
<td>0.0081</td>
</tr>
</tbody>
</table>

* Odds ratio

OS in IHC2+/FISH+ or IHC3+ (exploratory analysis)

<table>
<thead>
<tr>
<th>Event</th>
<th>Median OS</th>
<th>HR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC + T</td>
<td>120</td>
<td>16.0</td>
</tr>
<tr>
<td>FC</td>
<td>136</td>
<td>11.8</td>
</tr>
</tbody>
</table>

* Odds ratio

Van Cutsem E et al; ECCO/ESMO 2009
Bang Y, Van Cutsem E et al Lancet 2010

Van Cutsem E et al; LBAbstract 4509, ASCO 2009
Bang Y, Van Cutsem E et al Lancet 2010
Safety: cardiac AEs

<table>
<thead>
<tr>
<th>Cardiac event, n (%)</th>
<th>F+C n=290</th>
<th>F+C + trastuzumab n=294</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Grade 3/4</td>
</tr>
<tr>
<td>Cardiac AEs, total</td>
<td>18 (6)</td>
<td>9 (3)</td>
</tr>
<tr>
<td>Cardiac failure</td>
<td>2 (<1)</td>
<td>2 (<1)</td>
</tr>
<tr>
<td>LVEF drops*</td>
<td></td>
<td></td>
</tr>
<tr>
<td><50%</td>
<td>2 (1.1)</td>
<td></td>
</tr>
<tr>
<td><50% and by ≥10%</td>
<td>2 (1.1)</td>
<td></td>
</tr>
<tr>
<td>Cardiac AEs leading to death</td>
<td>2 (<1)</td>
<td>Cardiac arrest; cardio-respiratory arrest</td>
</tr>
</tbody>
</table>

*Measured at baseline and every 12 weeks; MI, myocardial infarction

Van Cutsem E et al; LBAbstract 4509, ASCO 2009
Bang Y, Van Cutsem E et al Lancet 2010

Suggested HER2 testing algorithm in GC/GEJ cancer

Patient tumour sample

IHC

0 +1 +2 retest +3

FISH/SISH*

- + Eligible for trastuzumab

*cut off for FISH, SISH = HER2:CEP17 ratio ≥2

Van Cutsem E et al; ECCO/ESMO 2009
Bang Y, Van Cutsem E et al Lancet 2010
Breakdown of successful HER2 IHC and FISH screening

<table>
<thead>
<tr>
<th></th>
<th>IHC 0,</th>
<th>IHC 1+,</th>
<th>IHC 2+,</th>
<th>IHC 3+,</th>
<th>Total,</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>FISH+</td>
<td>94 (4.9)</td>
<td>96 (15.7)</td>
<td>212 (54.6)</td>
<td>354 (94.9)</td>
<td>756 (23.0)</td>
</tr>
<tr>
<td>FISH-</td>
<td>1815 (95.1)</td>
<td>514 (84.3)</td>
<td>176 (45.4)</td>
<td>19 (5.1)</td>
<td>2524 (77.0)</td>
</tr>
<tr>
<td>Total</td>
<td>1909 (100)</td>
<td>610 (100)</td>
<td>388 (100)</td>
<td>373 (100)</td>
<td>3280 (100.0)</td>
</tr>
</tbody>
</table>

Concordance rate between FISH and IHC: 87.2%

Bang Y, Van Cutsem E et al. ASCO 2009

Median OS increased to >1 year with Trastuzumab-based treatment

LOGiC: Phase III Trial of Lapatinib + CapeOx in HER2+ Gastric Cancer

Patients with HER2-amplified locally advanced, unresectable, or metastatic gastric, esophageal, or GEJ cancer

(Planned N = 535)

- Primary endpoint: OS (was PFS)
- Data expected mid-2012

ClinicalTrials.gov. NCT00680901.

Pertuzumab & Trastuzumab Bind Distinct Epitopes on HER2 Extracellular Domain

- Activates ADCC
- Prevents HER2 domain cleavage
- Inhibits HER2-mediated signaling pathways

EGFR Family Inhibitors in Gastric Cancer

Phase III studies

<table>
<thead>
<tr>
<th>Target</th>
<th>Study</th>
<th>Control arm</th>
<th>Experimental arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>REAL-3<sup>1</sup></td>
<td>EOX</td>
<td>EOX + Panitumumab</td>
</tr>
<tr>
<td>EGFR</td>
<td>MATRIX<sup>2</sup></td>
<td>ECX</td>
<td>ECX + Matuzumab</td>
</tr>
<tr>
<td>EGFR</td>
<td>EXPAND<sup>3</sup></td>
<td>XP</td>
<td>XP + Cetuximab</td>
</tr>
<tr>
<td>EGFR/HER2</td>
<td>LOGIC<sup>4</sup></td>
<td>CapeOx</td>
<td>CapeOx + Lapatinib</td>
</tr>
<tr>
<td>EGFR/HER2</td>
<td>EGF104578 - 2<sup>nd</sup> line<sup>5</sup></td>
<td>Paclitaxel</td>
<td>Paclitaxel + Lapatinib</td>
</tr>
<tr>
<td>HER2</td>
<td>TOGA<sup>6</sup></td>
<td>XP/FP</td>
<td>XP/FP + Trastuzumab<sup>6</sup></td>
</tr>
</tbody>
</table>

Conclusions

- Trastuzumab is the first biological to show a survival benefit in gastric cancer
- Trastuzumab in combination with chemotherapy is a new standard option for patients with HER2-positive gastric adenocarcinoma
- Other biologicals under investigation
Save the Date!

22–25 June 2011

Gastrointestinal Cancer

22–25 June 2011
Barcelona, Spain